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Damping behaviour of polymeric materials 
subjected to longitudinal loads 

O . F A L K , *  J. KUB/~T, M. R IGDAHL 
Chalmers University of Technology, Department of Polymeric Materials, Fack, 
S-402 20 GOteborg, Sweden 

The present paper reports on measurements of shear modulus and damping in a torsion 
pendulum on polymeric materials and paper. The experiments were carried out in a 
torsion device which permitted an axial load to be applied to the sample. At low loads, 
apparent changes in modulus and damping were recorded. At higher loads, under which 
marked creep occurred, the damping increased at the moment of loading and then de- 
creased slowly, eventually approaching an equilibrium value. After release of the load, a 
transient decrease in damping was observed, the damping value of the origin sample being 
recovered after some time. During the creep and recovery processes, the modulus 
remained constant. 

1. Introduction 
Dynamic measurements of elasticity and damping 
have been used extensively in polymer science for 
studying transitions and thus providing infor- 
mation regarding the structure. The results of this 
technique have been reviewed by Ward [1] and 
Nielsen [2]. However, the damping behaviour 
during a creep process has not been given any 
more attention, although this probably can provide 
new information about the deformation process. 
Some results are given by N~igerl [3] who reports 
that the loss factor of plasticized poly(vinyl 
chloride) decreases with time. Hoffmann [4] 
examined both theoretically and experimentally 
the influence of an axial load on the damping 
behaviour of metallic strings in the linear region 
and found, for lower loads, an almost linear 
increase in the shear modulus with time. Within 
metal science the internal friction concept, which 
is equivalent to the damping measure, is now 
regarded to be a useful tool for studying structural 
changes (e.g. Snoek damping). For example, it has 
been found that the internal friction depends on 
the amount of plastic strain and in some cases also 
that it recovers after removal of the applied 
load [5, 6] .  The internal friction concept and its 
relation to movement of point defects, dislocations 

etc. have been reviewed by De Batist [7]. Recently 
Crissman and Zapas [8] reported on the damping 
behaviour of some polyethylenes during creep to 
failure. They found that tan 6 went through a 
minimum at strain levels approximately corre- 
sponding to the onset of local instability. The rise 
in damping at larger strains was suggested to be 
due to an increasing defect concentration within 
the crystallites. 

The present work reports on the behaviour of 
the complex modulus, determined in a torsion 
pendulum, in the elastic region and the region 
where marked flow is taking place. In the first 
region an apparent variation in real modulus and 
damping due to the influence of the applied load 
on the restoring torque is noticed. This effect is 
momentary and reversible, its extent being deter- 
mined by the geometry of the samples. This 
apparent variation of the modulus in the elastic 
region can be predicted from theory, while during 
creep marked deviations are observed. The 
damping always increased when the creep load was 
applied or removed. The damping value then 
decreased gradually approaching the value charac- 
teristic of the undeformed state. In contrast to 
this, there was no significant change in real 
modulus during the flow process. 
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2. Theory 
In the elastic region, the influence of the axially 
applied load on the frequency and damping is 
determined by the geometry of the samples. For 
samples with cylindrical cross-sections the stress 
has no influence on either the frequency of 
damping as long as there are no structural changes 
in the sample [9]. However, for samples with a 
rectangular cross-section an increase in frequency 
and a decrease in damping due to the applied load 
is observed [10, 11]. 

The following analysis relates to an inverted 
pendulum, where the oscillating system consists 
of the sample supported by a thin wire and a 
mass attached to the upper end of the sample 
[9]. The axial load is applied via a balance beam. 

For stress-free samples, the following equation 
relates the torque per unit angle, M',  with the 
frequency of the whole oscillating system, co e. 

M' = I w ~ / F  (1) 

where I is the moment of inertia and F is given by 

F 2 2 = coe/(coe--oo7)' (2) 

with co~ being the frequency without the sample. 
The real part of the total torque per unit angle 

can be divided in two parts, one depending on the 
shear modulus, and the other on the axial stress 
acting on the sample. The real part of the shear 
modulus, G', is related to M' by 

G' = aM' (3) 

where a is dependent on the geometry of the 
samples. For samples with the length I and with a 
rectangular cross-section (width b and thickness h) 
a is given by 

a = 3 t/bh 3 . (4) 

fhe total real modulus can now be written as [4, 
6] 

a '  = G ' (a  = 0) + c ' ( o )  (5) 

The first term on the right is 

G'(o = O) = aloo2e/F (6) 

and the second (i.e. contribution from the axial 
stress) 

G'(o) = ab~ha/12l  = (b2/4h2)o (7) 

where o is the applied stress. If h/b ~ 1 the contri- 
bution G' thus may become very large. From a 
physical point of view, however, only G'(a = 0) 
reflects the properties of the material. 

For stress-free samples, the imaginary part of 
the modulus, G", is related to the logarithmic 
decrement, A, in the following way 

= (8) 

According to [12] G" can be expected to remain 
constant, i.e. independent of the applied axial 
stress, as the stress is supposed to influence the 
real modulus, G', only. Evidently, the frequency 

2 and the logarithmic decrement A must be in- (..o e 
versely related. The above equations imply further 
a proportionality between toe 2 and o. The 
decrement thus decreases with increasing a to 
render the product toe 2A constant. The true value 
of A is obtained by extrapolating the measured 
values to o = 0. 

As with the decrement, the loss tangent will 
apparently change with o. This can be seen directly 
from the relation 

tan 6 = G"/G' .  
The above analysis only refers to the elastic region. 
During creep, when structural changes can be pro- 
duced, the dynamic behaviour becomes more 
complex as described below. Furthermore no 
absolute value of the damping can be obtained 
since the above elastic analysis is not valid in this 
region. 

3. Experimental 
For the measurements reported in this work two 
different inverted,type torsion pendulum devices, 
which have been described elsewhere [10], were 
used. They were designed for an axial load of 0 to 
300g and up to 5kg, respectively. The experi- 
ments were carried out at atmospheric pressure, 
65% rdlative humidity and 20 + 0.1 ~ C. The maxi- 
mum deformation of the samples due to the 
torsibnai' strain was of the order 1 0  - 4  . 

4. Materials 
The experiments were performed using polymer 
and paper samples having a length of 150 mm and 
a width of 15 ram. The following materials were 
used: 

(a) Low density polyethylene (LDPE) density 
0.920 g cm-3 melt index 2.0 g/10 rain (MFI 190/2), 
214 v = 9.0 x 104 , thickness 0.046 mm or 0.45 ram. 

(b) Rubber hydrochloride, density 1.12 g cm -3, 
/llv = 2.4 x l0 s , thickness 0.038 mm . . . .  

(c) Cellulose film, glycerol content 19%,i DP 
~290,  E,/E• = 1.8, moisture content at 65% r.h. 
16.4%, thickness 0.043 mm 
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Figure 1 The product to~A versus the 
applied load (elastic region) for (.)  
LDPE (stress range 0.01 to 0.44MPa), 
(,7) rubber hydrochloride (0.09 to 
5.26 MPa), (o) cellulose film (0.08 to 
4.65 MPa), and (o) kraft paper (0.02 to 
1.35 MPa). 

(d) MG kraft paper, density 0.70 gcm -3 , Ell/E • 
= 1.6, weight average fibre length 2.22mm, 
moisture content at 65% r.h. 13.0%, thickness 
0.148mm. 
Ell and E• refers to the elastic modulus in the 
machine (MD) and cross direction (CD), respect- 
ively. 

5. Results 
5.1. Damping behaviour under small axial 

stresses (elastic region) 
In Fig. 1 the product co~A is plotted versus the: 
axial load for different materials. As predicted in 
the preceding section this quantity is fairly con- 
stant for small loads. Only for the highest stresses 
can a deviation from this constancy be observed. 
These deviations are probably due to the onset of 
flow processes in the material. 
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Figure 2 The logarithmic decrement 
and the creep deformation for LDPE 
versus time under load. Load 1300g 
(13 N), thickness 0.45 mm. 
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5.2. Damping behaviour under high stresses 
The experiments reported on in the preceding 
section relate to the elastic region. When the stress 
level was raised substantially, creep effects became 
very pronounced. In this case the axial stress was 
chosen to be about 90% of the rupture stress, 
giving a creep rupture time of 1 to 2 days. The 
first measurements of the logarithmic decrement 
was made a few minutes after application of the 
load. 

For all investigated materials it was found that 
the frequency of oscillation and hence the real 
modulus G' was constant and independent of the 
creep deformation. 

During the creep process the damping decreased 
with the elapsed time. In Fig. 2 this behaviour 
is illustrated for LDPE together with the corres- 
ponding creep curve. The logarithmic decrement A 
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decreases by 20 to 25% in a few hours and then 
approaches, asymptotically, a constant value. A 
similar behaviour was registered for cellulose, 
rubber hydrochloride (Fig. 3), and paper (Fig. 4). 
No significant differences were observed in the 
A(time)-variation between paper samples cut in the 
MD- and CD-directions, although the magnitude 
of A at a given time was not the same. 

It may be remarked that the stress was not 
corrected for the sample elongation, but considering 
the rather small deformations occurring during 
creep the error introduced is negligible [13]. No 
correlation between the magnitude of the decrease 
in damping and total creep deformation was 
observed. 

5.3. Damping recovery in paper 
The time-dependent decrease in damping of paper 
was reversible. The paper samples were subjected 
to a load corresponding to about 80% of their 
rupture stress for 1 minute. After removal of the 
load the damping was registered as a function of 
the recovery time. Since the measurements were 
performed without loading, the recovery process 
could be expressed in terms of tan 6. 

Fig. 5 shows the relation between tan 6 and 
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Figure 4 The logarithmic decrement and the 
creep deformation for MG kraft paper, CD, 
against time under load. Load 4100 g (41 N). 
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Figure 3 The logarithmic decrement 
and the creep deformation for rubber 
hydrochloride against time under 
load. Load 100 g (10 N). 

time for kraft paper in the CD-direction. The 
damping reaches its maximum value immediately 
after unloading and then returns to its original 
state within 1 day. 

With LDPE and rubber hydrochloride similar 
behaviour of the damping during recovery was 
observed, although the effects were not sufficiently 
pronounced to permit accurate measurements 
with the present method. 

6. Final remarks 
The remarks obtained above show that there are 
two types of change in the dynamic characteristics 
of strip-shaped samples subjected to an axial load 
in a torsion pendulum. Firstly, the modulus 
apparently increases with the load, the amount of 
increase depending on the geometry of the sample. 
The damping on the other hand decreases. This 
applies to small loads, i.e. in the elastic region. At 
higher loads, where creep effects are pronounced, 
i.e. where structural changes are taking place, an 
additional decrease in damping, for constant stress 
load, with time is observed. 

As evident from Figs. 2, 3, and 4 the decay in 
damping during creep is not exponential but 
rather more logarithmic extending over a few 

I I I 

1 0  

8 

6 

4 

2 

I I I 

101 10 2 10 3 

t i m e  , m i n  

2331 



5 

o 

~o 
c 

4 

I I I 

~efore l o a d i n g  

101 10 2 10 3 
t i m e  , min 

Figure 5 Tan 8 plotted against time after loading (3500g, 
35 N) for 1 min to 80% of the rupture load. MG kraft 
paper, CD. 

decades of time. The same behaviour applies to 
recovery; when the load is removed an increase in 
damping is noted, then the damping decreases 
logarithmically with time to its virgin value. A 
straight correlation of the decrease in damping 
with the creep deformation was not noted. For 
metals, similar effects have been studied under 
plastic flow by Feltham [14] and a linear increase 
in internal friction with the tensile strain rate was 
found. A relation of this kind does not seem to 
apply for polymeric materials. 

The time dependence of the logarithmic 
decrement exhibits strong similarities with the 
kinetics of other flow processes in solids; e.g. 
stress relaxation [15], although the results do not 
permit an exact evaluation of the kinetics in- 
volved. Like other flow processes it is tempting to 
interpret the decrease in damping with time in 
terms of cooperative effects between the flow 
units (e.g. structural defects) responsible for the 
creep process [ t6] .  The movement of coupled 
flow units, as reflected in the damping value, is a 
consequence of the creep or recovery process and 
not of the deformation due to the oscillations of 
the pendulum. The flow processes, i.e. move- 
ments of flow units, taking place in the sample 
thus give rise to additional damping simply be- 
cause every irreversible movement in the stress 
field of the torsional oscillations must lead to 
energy dissipation. The number of defects or 
other structural parts may remain unchanged, 
the important thing being their movement. This 
is also in agreement with the ideas concerning 
similar processes in metals [14]. 

It is at this point difficult to explain the 
detailed mechanisms of the change in damping 
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with strain. This difficulty is also recognized 
by Crissman and Zapas [18] who correlated the 
observed minimum in tan 8 during creep with 
the onset of local instability, but in their work no 
explanation for the initial decrease in damping was 
provided. For crystalline solids similar effects have 
been associated with work hardening [14]. 

Some creep experiments for paper were con- 
tinued to rupture but no anomalous damping 
changes were found in the time period close to 
the creep rupture. Such changes could be expected 
if, during that period, there were excessive re- 
arrangements of the paper structure, breaking of 
bonds and similar loss-causing effects. Thus bond 
breaking does not seem to be the main flow 
mechanism in paper. 

In a future paper, measurements of the 
damping during creep at different temperatures for 
a number of thermoplastics, giving more insight 
into the mechanisms of the strain dependence of 
tan 5, will be presented. 
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